
Transfer Learning between Texture Classification
Tasks using Convolutional Neural Networks

Luiz G. Hafemann, Luiz S. Oliveira
Department of Informatics

Federal University of Parana
Curitiba, PR, Brazil

luiz.gh@gmail.com, lesoliveira@inf.ufpr.br

Paulo R. Cavalin
IBM Research - Brazil

Rio de Janeiro, RJ, Brazil
pcavalin@br.ibm.com

Robert Sabourin
Lab. d’imagerie, de vision et d’intelligence artificielle

École de technologie supérieure
Université du Québec, Montreal, Canada

robert.sabourin@etsmtl.ca

Abstract—Convolutional Neural Networks (CNNs) have set
the state-of-the-art in many computer vision tasks in recent
years. For this type of model, it is common to have millions
of parameters to train, commonly requiring large datasets. We
investigate a method to transfer learning across different texture
classification problems, using CNNs, in order to take advantage
of this type of architecture to problems with smaller datasets.
We use a Convolutional Neural Network trained on a source
dataset (with lots of data) to project the data of a target dataset
(with limited data) onto another feature space, and then train a
classifier on top of this new representation. Our experiments show
that this technique can achieve good results in tasks with small
datasets, by leveraging knowledge learned from tasks with larger
datasets. Testing the method on the the Brodatz-32 dataset, we
achieved an accuracy of 97.04% - superior to models trained with
popular texture descriptors, such as Local Binary Patterns and
Gabor Filters, and increasing the accuracy by 6 percentage points
compared to a CNN trained directly on the Brodatz-32 dataset.
We also present a visual analysis of the projected dataset, showing
that the data is projected to a space where samples from the same
class are clustered together - suggesting that the features learned
by the CNN in the source task are relevant for the target task.

I. INTRODUCTION

Texture classification is an important task in image pro-
cessing and computer vision, with a wide range of appli-
cations, such as computer-aided medical diagnosis [1], [2],
[3], classification of forest species [4], [5], [6], classifica-
tion in aerial/satellite images [7] and writer identification
and verification [8]. This problem is commonly treated as a
pattern recognition problem, and many feature descriptors have
been developed targeting this particular type of problem, as
reviewed by Zhang et al. [9] and tested on multiple datasets
by Guo et al. [10]. Noteworthy techniques are: Gray-Level
Co-occurrence Matrices (GLCM), the Local Binary Pattern
operator (LBP) and Gabor filters.

In recent years, there has been an increased interest on
machine learning models that do not rely on hand-engineered
feature extractors, but that instead use raw data and learn the
representations. This is the case of Deep Learning models,
as reviewed by Bengio in [11] and [12]. From these models,
Convolutional Neural Networks have been used to set the
state-of-the-art in many computer vision tasks, such as object
classification (as in the CIFAR dataset [13]), localization and
object classification over a large number of classes (an in
the ImageNet dataset [14]). This type of model has been
particularly successful on large datasets, such as the ImageNet

dataset that contains 1.2 million images on 1000 categories.
For such tasks, it is common to have a large number of
trainable parameters (in the order of millions), requiring a
significant amount of computing power to train the network.

In the task of texture classification, CNNs are not yet
widely used. Titive et al. [15] used convolutional neural
networks on the Brodatz texture dataset, but considered only
low resolution images, and a small number of classes. More
recently, Hafemann et al. tested this type of model for Forest
Species classification with good results [16]. For forest species
recognition, the datasets were large enough to successfully
train the network - for example, one of the datasets consists
of 3k images of size 3264 x 2448. Considering the results
from both object recognition and texture classification, having
large datasets seem to be required for successfully training
CNNs. In practical applications, however, there are several
cases where we must deal with relatively small datasets. For
this reason, techniques that try to overcome this situation, such
as transfer learning, are important to increase the accuracy of
such systems.

In this paper, we consider the task of transferring learning
between texture classification tasks. Instead of training CNNs
directly for a task (e.g. a task with a small dataset), we present
and test a simple transfer learning method using Convolutional
Neural Networks. A CNN is trained in a source task and it is
used to project the data of a target dataset onto another feature
space. The expectation is that the patterns learned on the
source dataset can be used to project the samples of the target
dataset onto a feature space where the classes are more easily
separable. In practice, we use the CNN trained on the source
dataset as a “feature extractor” for the target dataset. This idea
is especially interesting to try to improve classification rates on
tasks that have small datasets, where directly training CNNs
may not perform well.

This strategy was inspired by the work of Oquab et. al
[17], that used a CNN trained on the ImageNet dataset to
classify images on a smaller dataset (Pascal VOC dataset)
with improved results. Differently from their work, instead of
copying the weights from the source neural network to a target
network with additional layers, we use the source network to
project the data to a new feature space, by performing forward
propagation of the target dataset data through the network,
obtaining a new representation for each sample. We then train
another classifier (in this work, Support Vector Machines)
on this new representation. We also adapt the training and



testing procedure to take advantage of particularities of texture
datasets, extending the strategy for training CNNs on texture
datasets presented in [16] to transfer knowledge across tasks.

This paper is organized as follows: section II reviews
the foundations for transfer learning; section III presents our
method for transferring learning between texture classification
tasks, and the results are shown in section IV. Finally, section
V presents the conclusions.

II. BRIEF REVIEW ON TRANSFER LEARNING

Transfer learning is a strategy that aims to improve the
performance on a machine learning task by leveraging knowl-
edge obtained from a different task. The intuition is: we expect
that by learning one task we gain knowledge that could be
used to learn similar tasks. For example, learning to recognize
apples might help in recognizing pears, or learning to play the
electronic organ may help learning the piano [18].

In a survey on transfer learning, Pan and Yang [18] use
the following notations and definitions for transfer learning: A
domain D consists of two components: a feature space X and
a probability distribution P (X), where X = {x1, ..., xn} ∈
X . Given a specific domain, D = {X , P (X)}, a task consist
of two components: a label space Y and an objective predictive
function f(.), denoted by T = {Y, f(.)}), which is not ob-
served, but that can be learned from training data. The function
f(.) can then be used to predict the corresponding label, f(x)
of a new instance x. From a probabilistic perspective, f(x) can
be written as P (y|x). In an example in the texture classification
domain, we use a feature extractor on the textures to generate
the feature space X . A given training sample is denoted by
X , X ∈ X , with associated label y, y ∈ Y . A model is then
trained on a dataset to learn the function f(.) (or P (y|x)).

Transfer learning can then be defined as follows:

Definition 2.1: Given a source domain DS and learning
task TS , a target domain DT and learning task TT , transfer
learning aims to help improve the learning of the target
predictive function fT (.) in DT using the knowledge in DS

and TS , where DS 6= DT , or TS 6= TT
To illustrate, we can use this definition for texture clas-

sification. We can apply transfer learning by using a source
task from a different domain D, for example, using a different
feature space X (with a different feature descriptor) or using a
dataset with different marginal probabilities P (X) (i.e. textures
that display different properties from the target task). We can
also apply transfer learning if the task T is different: for
example, using a source task that learns different labels Y or
with different objective f(.).

There are multiple categories of transfer learning. In the
present work, we focus on inductive transfer learning, where
we need labeled datasets for both the source and target tasks.
In particular, we consider transferring knowledge of Feature
Representations, where the basic idea is to learn a low-
dimensional representation on the source task, that is shared
across related tasks.

A. Transfer Learning in Convolutional Neural Networks

The architecture of state-of-the-art Convolutional Neural
Networks often contains a large number of parameters, reach-

ing the order of millions. Learning so many parameters may
present poor results with small datasets. Transfer learning can
assist in this task, by using the internal representation learned
from one task, and applying it to another task. As noted by
Oquab et. al [17], a CNN can act as a generic extractor of mid-
level representations, which can be pre-trained in a source task,
and then re-used in other target tasks.

One difficulty to apply this method is that the distribution
of the images, P (X), may differ significantly between the
source and target tasks. Oquab et. al [17] propose a simple
method to cope with this problem, by training an adaptation
layer: after the CNN is trained on the source task, the pa-
rameters learned by network, except for the last layer, are
transferred to the target task. Two fully-connected layers are
added to the network, and trained with the training set from
the target task. Using this simple transfer learning procedure,
Oquab et. al were able to achieve state-of-the-art results on the
competitive Pascal VOC dataset.

III. PROPOSED METHOD

We now present a method for transferring learning across
different texture classification tasks. This method has been
inspired by the work of Oquab et al. [17] on transfer learning
for object recognition and adapted to texture classification,
taking advantage of particular characteristics of textures. From
a high-level, we follow these steps:

• Train a CNN in the source task

• Use this network to obtain a new representation of the
target task (project the data to another feature space)

• Use this new representation to train a model

The following sections present the details of the method.

A. CNN training

We train a Convolutional Neural Network on the source
task following the procedure presented in [16]. This method is
described in Algorithm 1, and essentially performs Stochastic
Gradient Descent to update the weights of the CNN, using,
in each epoch, a different random patch from each texture
in the training set. This procedure is particularly useful for
textures, where it is often possible to classify a sample with a
small region of the image. We also found that in practice this
method helps preventing overfitting the training set.

This architecture is based on [16], and consists of the
following layers and parameters:

1) Input layer: patches from the original image, of size
sp x sp

2) Two combinations of convolutional and pooling lay-
ers: each convolutional layer has 64 filters and stride
set to 1. The first convolution layer has filters of size
sf1 x sf1 and the second convolution uses filters of
size 3x3. The pooling layers consist of windows with
size 3x3 and stride 2;

3) Two locally-connected layers: 32 filters of size 3x3
and stride 1;

4) Fully-connected output layer: dependent on the num-
ber of classes of the problem. In our case, 41 classes
on the source dataset.



Algorithm 1 Training with Random Patches
Require: dataset, patchsize, batch size, learning rate, momentum factor

1: model state ← random weights
2: repeat
3: datasetepoch ← empty list
4: for each image in dataset do
5: Insert(datasetepoch, Random Image Crop(image, patchsize))
6: end for
7: numBatches ← size(dataset) / batch size
8: for batch ← 0 To numBatches do
9: datasetbatch ← datasetepoch[batch * batch size : (batch+1) * batch size -1]

10: model state ← ForwardProp(model, datasetbatch.X)
11: gradients ← BackProp(model state, datasetbatch.Y)
12: ApplyGradients(model, gradients, learning rate, momentum factor)
13: end for
14: until Convergence Criteria()

These hyperparameters were selected according to [16],
and we optmized the values for the input layer (size of
the patches, sp) and the size of the filters from the first
convolutional layer (sf1) using a grid search. We considered
inputs of size 32x32, 48x48, 64x64 and 96x96; and filters of
size 3x3, 5x5, 7x7, 10x10 and 12x12.

B. Training a model for Transfer learning

After training a CNN on the source task, we use it to obtain
a new representation for the target dataset. One interpretation
for this procedure is to consider that the source task (learn a
CNN model on a texture dataset) learns feature extractors that
are generic, to some extent, and that are useful for the target
task. We use the CNN to extract a new representation for the
target dataset, which is similar to using a feature extractor
to the input, obtaining a new vector representation for each
sample. When extracting the new representation, similar to
Oquab et al. [17], we use the layers of the CNN (trained on
the source task) up to the last layer before softmax.

When training the CNN using the method above, we use
patches of the original images, instead of the full image. This
means that when we generate a new representation on the target
dataset, we are generating new representations for patches of
the target images. Since SVM requires a static (fixed) dataset
for training, we decided to consider two approaches to extract
the patches from the target images: 1) using the set of non-
overlapping patches (grid patches) and 2) Using N random
patches from each image, where N is a hyperparamenter for
the system. After extracting the patches from the images on
the target dataset, we generate a new representation for the
patches (using the CNN) obtaining a new dataset. We use this
dataset for training an SVM. These steps are formalized in
Algorithm 2 and illustrated in Figure 1.

C. Obtaining predictions on the target dataset

The test procedure using Transfer Learning is also adapted
for textures. First, we extract the patches of the testing set,
using the same approach used for the training set. We use
the model trained on the source task to generate the new
representation, and use the model trained using algorithm 2 to
generate the predictions for each patch of the image. We then

2. Forward Propagate 

1. Extract patches 
(training set)

New representation

Model

3. Train model 
(SVM, LogReg)

Convolution

Convolution

Max Pooling

Max Pooling

2x Locally-connected

Fully-connected

Input

Fig. 1. The training procedure for transfer learning. First, we extract patches
from the training set of the target task. For each patch, a new representation
is obtained by forward-propagating the sample through the CNN trained on
the source task. With this new dataset, a machine learning model is trained.

combine the results of the patches and calculate the accuracy.
This procedure is described in Algorithm 3 and illustrated in
Figure 2.

IV. EXPERIMENTS

We now present the results of our experiments with Trans-
fer Learning. For each experiment, we followed the procedure
listed above to generate the new representations for the target
dataset. We trained Support Vector Machines (SVMs) using
the python package scikit-learn [19], that provides a wrapper
over the libsvm [20] library. We trained SVMs with the radial
basis function (RBF) kernel, selecting the hyperparameters C
and γ using a grid search, following the recommended values
from Hsu [21]. It is worth noting that due to limitations on



Algorithm 2 Transfer Learning - training
Require: dataset trainsource, dataset traintarget, dataset testtarget, patchSize

1: modelsource ← Train With Random Patches(dataset trainsource, patchSize)
2: Patches traintarget ← empty list
3: for each image in dataset traintarget do
4: Insert(Patches traintarget, ExtractPatches(image, patchSize))
5: end for
6: NewDataset traintarget ← GetNewRepresentation(modelsource, Patches traintarget)
7: Modeltarget ← TrainModel(NewDataset traintarget)

Algorithm 3 Transfer Learning - test
Require: modelsource, modeltarget, dataset testtarget, patchSize

1: Patches testtarget ← empty list
2: for each image in dataset testtarget do
3: Insert(Patches testtarget, ExtractPatches(image, patchSize))
4: end for
5: NewDataset testtarget ← GetNewRepresentation(modelsource, Patches testtarget)
6: PatchProbabilitiestarget ← GetModelPredictions(modeltarget, NewDataset testtarget)
7: ImageProbabilities ← CombineProbabilities(PatchProbabilities)
8: Predictions ← argmax(ImageProbabilities)
9: ClassifiedCorrectly ← Count(Predictions = dataset testtarget.Y)

10: Accuracy ← ClassifiedCorrectly / Size(dataset)

2. Forward Propagate 

New representation

Model

Convolution

Convolution

Max Pooling

Max Pooling

2x Locally-connected

Fully-connected

Input

1. Extract patches 
(testing set)

3. Predict

Patch Predictions

4. Combine probabilities

Image Predictions

Fig. 2. The testing procedure for transfer learning. First, we extract patches
from the testing set of the target task. For each patch, a new representation
is obtained by forward-propagating the sample through the CNN trained on
the source task. This new representation is used to obtain a prediction using
the model trained for transfer learning. Lastly, the predictions of all patches
of the image are combined.

computing power, we do not optimize these hyperparameters
using the whole training set. Instead, a subset of five thousand
examples is randomly selected to perform this optimization,
and subsequently an SVM is trained with these hyperparame-
ters on the whole training set. We performed the whole process
using 3-fold cross validation, and report the mean and standard
deviation of the accuracy.

A. Datasets

For this experiment, we selected one large texture dataset
for training the source task, and a smaller texture dataset
for the target task. For the source task, we used a dataset
of macroscopic images for forest species recognition[22], the
same dataset used in [16] to train a CNN. This dataset contains
pictures of cross-section surfaces of the trees, obtained using
a regular digital camera. This dataset contains 41 classes, and
images with resolution 3264 x 2448. This dataset is large
(around 65 GB in a bitmap format), which is desired for the
source task. Examples from this dataset can be found in Figure
3

Fig. 3. Sample images from the macroscopic Brazilian forest species dataset

For the target task, we used a smaller dataset: Brodatz-
32. The Brodatz album is a classical texture database, dating
back to 1966, and it is widely used for texture analysis.
[23]. This dataset is composed of 112 textures, with a single



640x640 image per each texture. In order to standardize the
usage of this dataset for texture classification, Valkealahti [24]
introduced the Brodatz-32 dataset, a subset of 32 textures from
the Brodatz album, with 64 images per class (64x64 pixels in
size), containing patches of the original images, together with
rotated and scaled versions of them (see Figure 4). This dataset
is small (around 8 MB in a bitmap format) and was selected to
identify if we can increase classification performance on small
datasets using transfer learning. Samples from this dataset can
be found in Figure 4.

Fig. 4. Sample images from the Brodatz-32 dataset [24]

B. Training

We first trained a CNN on the source task using Algorithm
1, similarly to the work presented in [16]. Differently from
this previous work, we first converted the images to grayscale
before training the CNN, since the images from the target
dataset (Brodatz) do not have colors. It is worth noting that
we did not see a significant performance drop compared to
the CNN trained using the original dataset (with colors). For
training, we obtained best results using patches of size 32x32,
and a filter size of 12x12 on the first convolutional layer. We
kept the remaining parameters as reported in [16].

After training the CNN, we used it to obtain a new
representation for the Brodatz-32 dataset. We first split the
dataset, with half of the samples for training and half for
testing, as in previous work on this dataset ([25], [26]). We
then extracted 32x32 patches from the Brodatz-32 images, used
the CNN to obtain a new representation, and trained an SVM
classifier, following Algorithm 2. As described in section III,
we considered two strategies for extracting the patches: the
set of non-overlapping patches and random patches. In this
case, the set of non-overlapping patches generated 4 patches
of 32x32 pixels per image (each image of size 64x64). For
random patches we tested multiple values, ranging from 2
patches to 80 patches per image.

C. Results

We first present the results of the tests with different patch
extraction alternatives, as discussed above. Figure 5 shows the
performance (classification accuracy) with different number
of random patches extracted per image, comparing it to the
result using the set of non-overlapping patches (grid patches).
We can see that we obtain a superior performance using
random patches (97.04%), but only when we consider a large
number of patches per image. It is worth noting that this
alternative requires more computational power (more samples
to classify for a given image), that needs to be balanced with

the simpler approach (non-overlapping patches) that achieved
a performance of 96.35%.

●

●

●

● ●

●

●

92

93

94

95

96

97

20 40 60 80
Number of random patches

C
la

ss
ifi

ca
tio

n 
Ac

cu
ra

cy

Grid Patches
Random Patches

Accuracy vs. number of patches per image

Fig. 5. Accuracy on the Brodatz-32 dataset using different number of Random
Patches, compared to using Grid Patches.

Table I compares the method presented in this paper with
the state-of-the art for classification in the Brodatz-32 dataset.
We also present the results of a CNN trained in the Brodatz-
32 dataset, according to [16]. We can see that the proposed
method, leveraging the features learned on a larger dataset, was
able to achieve results close to the state-of-the-art - 97.04%
of accuracy compared to 98.90% of accuracy using Robust
LBP. We can also see that this method present much better
results than training a CNN directly on the Brodatz-32 dataset.
This is likely due to the fact that the Brodatz-32 dataset is
very small, and the CNN trained directly on it was unable
to learn good representations. It is interesting to notice that
even though the samples from the two datasets (Brodatz-32
and the Forest Species dataset) are very different, we can see
that the representations learned by the CNN trained on the
Forest Species dataset were relevant for the Brodatz-32 task.
We explore this observation in the next section.

TABLE I. CLASSIFICATION ON THE BRODATZ-32 DATASET

Features and Algorithm Accuracy
LBP (KNN) [25] 91.40%

Completed LBP (KNN) [25] 92.80%
Gabor Filters (KNN) [25] 95.80%

Shape Size Pattern Spectra (Decision Trees) [26] 96.50%
Dominant LBP (KNN) [25] 98.30%

Robust LBP (KNN) [25] 98.90%
CNN trained on Brodatz-32 91.27% (+- 0.53%)
Transfer Learning (SVM) 97.04% (+- 0.65%)

D. Visualizing the data

We now explore visually how a CNN trained on one dataset
can be useful for other tasks.

For this purpose, we use the t-SNE algorithm [27]. T-SNE
is a popular algorithm for visualizing high-dimensional data,
by projecting the samples onto two dimensions retaining the
local structure of the data.

Our objective is to see how well the weights learned by a
CNN trained on one task can help in projecting the samples
of another task onto a dimension where they are more easily
separable. Below we report three visualizations of the Brodatz-
32 dataset: the original dataset, the projection of the samples



through a CNN trained on the same dataset, and the projection
of the samples through a CNN trained on the Forest Species
dataset.

For the original dataset, we extract all non-overlapping
patches from the images, and used t-SNE to reduce the raw
data - pixels of the patches, of size 1024 (32x32) - to two
dimensions. For the two other representations, we performed
forward-propagation through the CNN using these patches,
obtaining a new representation. We then used t-SNE to reduce
this representation (1152 dimensions, in both CNNs) to two
dimensions. Using this 2D representation, we built a scatter
plot, representing the different classes with different colors.
This representation allows us to see how the samples are
clustered together in the high-dimensional space.

Figure 6 contains the visualization of the original dataset.
We can see that the samples from different classes (colors)
are mixed together, with no clear separation. This means that
distances (such as euclidean distance) in the representation
space using the original pixels are not very useful (we would
expect a classifier that relies on these distances to perform
poorly, such as KNN and linear classifiers).

Fig. 6. Visualization of patches (32x32) from the original Brodatz-32 dataset,
reduced to 2D using t-SNE.

Figure 7 contains the visualization of the Brodatz-32
dataset transformed through a CNN trained on the same
dataset. We can see that for several classes the samples get
grouped together in the feature space. For example, the dark
blue cluster in the bottom of the page refers to the Brodatz
image D104.

Figure 8 contains the visualization of the Brodatz-32
dataset transformed through a CNN trained on the Forest
Species dataset. It is interesting to note, that although the CNN
had no access to samples of the Brodatz-32 dataset during
training, it is still able to project the dataset to a feature space
where samples from the same class get clustered together.
We notice that in this case each class do not necessary form
a single cluster: samples from the same class form multiple
groups, but most of these groups are concise and separated
from groups of other classes. This suggests that the features
learned by the CNN trained on the Forest Species dataset
are useful for the Brodatz-32 dataset, in spite of the large
differences of the samples from the two datasets.

Fig. 7. New representation obtained by projecting the patches from the Bro-
datz dataset through a CNN (trained on the same dataset). The representation
(1052 dimensions) is reduced to 2D using t-SNE for visualization.

Fig. 8. New representation obtained by projecting the patches from the
Brodatz dataset through a CNN trained on the Forest Species dataset. The
representation (1052 dimensions) is reduced to 2D using t-SNE for visualiza-
tion.

V. CONCLUSION

We presented a method to transfer learning across different
texture classification problems, using CNNs. Our experiments
showed that this method can be used to obtain high classi-
fication accuracy on tasks with limited amounts of data, by
leveraging knowledge learned on tasks with large datasets,
even if the tasks are not very similar. In the tests with the
Brodatz-32 dataset, we obtained an accuracy of 97.04%, a
result that is better than the classification accuracy of models
that use some of the most popular texture descriptors, such
as LBP (with 91.40% of accuracy) and Gabor Filters (with
95.80% of accuracy). This method also performed better than
training a CNN directly on the Brodatz-32 dataset (which
obtained an accuracy of 91.27%). We also presented a visual
analysis of how the samples are projected to a better feature
space by using CNNs, showing that the weights learned by the
CNN in one task can be used to project the data of another
dataset to a better feature space, where the samples are more
easily separated.

REFERENCES

[1] H. Harms, U. Gunzer, and H. M. Aus, “Combined local color and
texture analysis of stained cells,” Computer Vision, Graphics, and Image
Processing, vol. 33, no. 3, pp. 364–376, Mar. 1986.



[2] A. Khademi and S. Krishnan, “Medical image texture analysis: A case
study with small bowel, retinal and mammogram images,” in Canadian
Conference on Electrical and Computer Engineering, 2008. CCECE
2008, May 2008, pp. 001 949–001 954.

[3] R. Sutton and E. L. Hall, “Texture measures for automatic classification
of pulmonary disease,” IEEE Transactions on Computers, vol. C-21,
no. 7, pp. 667–676, Jul. 1972.

[4] J. Y. Tou, Y. H. Tay, and P. Y. Lau, “A comparative study for texture
classification techniques on wood species recognition problem,” in
Natural Computation, 2009. ICNC’09. Fifth International Conference
on, vol. 5, 2009, pp. 8–12.

[5] P. Filho, L. Oliveira, A. Britto, and R. Sabourin, “Forest species
recognition using color-based features,” in 2010 20th International
Conference on Pattern Recognition (ICPR), 2010, pp. 4178–4181.

[6] M. Nasirzadeh, A. Khazael, and M. bin Khalid, “Woods recognition
system based on local binary pattern,” in 2010 Second International
Conference on Computational Intelligence, Communication Systems and
Networks (CICSyN), 2010, pp. 308–313.

[7] R. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for
image classification,” IEEE Transactions on Systems, Man and Cyber-
netics, vol. SMC-3, no. 6, pp. 610–621, Nov. 1973.

[8] D. Bertolini, L. S. Oliveira, E. Justino, and R. Sabourin, “Texture-based
descriptors for writer identification and verification,” Expert Systems
with Applications, 2012.

[9] J. Zhang and T. Tan, “Brief review of invariant texture analysis
methods,” Pattern recognition, vol. 35, no. 3, pp. 735–747, 2002.

[10] Y. Guo, G. Zhao, and M. Pietikinen, “Discriminative features for texture
description,” Pattern Recognition, vol. 45, no. 10, pp. 3834–3843, Oct.
2012.

[11] Y. Bengio, “Learning deep architectures for AI,” Found. Trends Mach.
Learn., vol. 2, no. 1, pp. 1–127, Jan. 2009.

[12] Y. Bengio and A. Courville, “Deep learning of representations,” in
Handbook on Neural Information Processing. Springer, 2013, pp.
1–28.

[13] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Ben-
gio, “Maxout networks,” arXiv e-print 1302.4389, Feb. 2013, JMLR
WCP 28 (3): 1319-1327, 2013.

[14] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
CoRR, vol. abs/1409.4842, 2014.

[15] F. H. C. Tivive and A. Bouzerdoum, “Texture classification using

convolutional neural networks,” in TENCON 2006. 2006 IEEE Region
10 Conference. IEEE, 2006, pp. 1–4.

[16] L. G. Hafemann, L. S. Oliveira, and P. Cavalin, “Forest species recogni-
tion using deep convolutional neural networks,” in Pattern Recognition
(ICPR), 2014 22nd International Conference on. IEEE, 2014, pp.
1103–1107.

[17] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and transferring
mid-level image representations using convolutional neural networks,”
in CVPR, 2014.

[18] S. J. Pan and Q. Yang, “A survey on transfer learning,” Knowledge and
Data Engineering, IEEE Transactions on, vol. 22, no. 10, pp. 1345–
1359, 2010.

[19] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[20] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support
vector machines,” ACM Transactions on Intelligent Systems and
Technology, vol. 2, pp. 27:1–27:27, 2011, software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[21] C.-W. Hsu, C.-C. Chang, C.-J. Lin et al., “A practical guide to support
vector classification,” 2003.

[22] P. L. P. Filho, L. S. Oliveira, S. Nisgoski, and A. S. Britto, “Forest
species recognition using macroscopic images,” Machine Vision and
Applications, Jan. 2014.

[23] P. Brodatz, Textures: a photographic album for artists and designers.
Dover New York, 1966, vol. 66.

[24] K. Valkealahti and E. Oja, “Reduced multidimensional co-occurrence
histograms in texture classification,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 20, no. 1, pp. 90–94, Jan. 1998.

[25] J. Chen, V. Kellokumpu, G. Zhao, and M. Pietikinen, “RLBP: Robust
local binary pattern.” BMVC, 2013.

[26] E. R. Urbach, J. B. Roerdink, and M. H. Wilkinson, “Connected shape-
size pattern spectra for rotation and scale-invariant classification of
gray-scale images,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 29, no. 2, pp. 272–285, 2007.

[27] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne,”
Journal of Machine Learning Research, vol. 9, no. 2579-2605, p. 85,

2008.


